14,63 €
18,29 €
Naive Set Theory
Naive Set Theory
14,63 €
18,29 €
  • Išsiųsime per 10–14 d.d.
Halmos begins, "Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer ... with the minimum of philosophical discourse and logical formalism". The mathematician, scientist, or engineer who needs to know the facts of set theory will find this crisp, clear, concise book, by a master expositor, ideal.
14.63 2025-06-29 23:59:00
  • Autorius: Paul R Halmos
  • Leidėjas:
  • Metai: 2015
  • Puslapiai: 112
  • ISBN-10: 1781394660
  • ISBN-13: 9781781394663
  • Formatas: 15.2 x 22.9 x 0.7 cm, minkšti viršeliai
  • Kalba: Anglų
  • Extra -20 % nuolaida šiai knygai su kodu ENG20

Naive Set Theory | Paul R Halmos | knygos.lt

Atsiliepimai

(4.23 Goodreads įvertinimas)

Aprašymas

Halmos begins, "Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer ... with the minimum of philosophical discourse and logical formalism". The mathematician, scientist, or engineer who needs to know the facts of set theory will find this crisp, clear, concise book, by a master expositor, ideal.

EXTRA 20 % nuolaida

14,63 €
18,29 €
Išsiųsime per 10–14 d.d.

Kupono kodas: ENG20

Akcija baigiasi už 3d.00:22:19

Nuolaidos kodas galioja perkant nuo 10 €. Nuolaidos nesumuojamos.

Prisijunkite ir už šią prekę
gausite 0,91 Knygų Eurų!?
Įsigykite dovanų kuponą
Daugiau

Halmos begins, "Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer ... with the minimum of philosophical discourse and logical formalism". The mathematician, scientist, or engineer who needs to know the facts of set theory will find this crisp, clear, concise book, by a master expositor, ideal.

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%